

Decarbonization of Europe's Power Generation

Ready for Hydrogen Engine Power Plants for 25% Hydrogen in Natural Gas

Bernadet Hochfilzer 22.09.2021

Introduction

- Jenbacher* gas engines from INNIO*
- Jenbacher type 6 gas engines
- Jenbacher type 612 gas engine at LEC

H₂ admixing to the natural gas grid

Performance measurement: H₂ admixing to natural gas at LEC

- Measurement setup
- What changes?
- Which challenges we are facing?
- What happens with the engine operation window?
- What can we do?

INNIO's hydrogen admixing demo projects

Summary

All rights reserved

Introduction Jenbacher* gas engines from INNIO*...

- ... provide electrical and thermal energy in a flexible, efficient and reliable manner onsite and with a short lead time
- ... serve 50 and 60 Hz grids, operate in grid-parallel and island mode, have a fast load acceptance
- ... cover an electrical power range from 250 kW to 10.4 MW
- ... offer electrical efficiencies > 49 % and CHP efficiencies > 92 %
- ... cover a wide range of fuel gases incl. hydrogen and challenging special gas applications
- ... have low pollutant emissions and low oil consumption
- ... offer advanced monitoring and diagnostics possibilities

Introduction Jenbacher* type 6 gas engines

Engine version	J624 K	J620, 616 and 612 J	
Engine process	4-stroke spark ignition engine with lean A/F mixture		
Mixture preparation	Gas-mixer upstream of turboch	narger, passive pre-chamber gas valve	
Turbocharging	2-stage	1-stage	
Gas exchange	Single cylinder heads with 4 valves per cylinder		
	Advances early miller timing	Moderate early miller timing	
Combustion concept	Gas scavenged prechamber, c	ompact main chamber	
Ignition	High energy ignition system, spark plug		
Power control	CBP and TV		

Lean burn gas engine type 6 (2.0 – 4.5 MW)

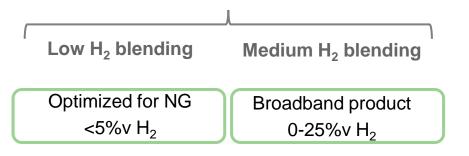
Introduction Jenbacher* type 612 gas engine at LEC

Engine version	J612 – J02		
Stroke / bore [mm]	220 / 190		
Displacement [dm ³]	6.24 per cylinder		
BMEP [bar]	22		
Rated speed [1/min]	1500 (50Hz)		
Power output [kW _{mec}]	2058		
Electrical efficiency [%]	45.8 @ MN \geq 80 **		
Total efficiency [%]	90.8		
Start time [s]	< 300		

**50 Hz operation with NO_{χ} = 500 mg/Nm³ @ 5 % O₂ according to ISO 3046

LEC testbench J612-J02

All rights reserved


*Indicates a trademark

H₂ admixing to the natural gas grid Toward renewable fuels

H₂ in natural gas pipeline

- Increasing the use of renewable energy like hydrogen requires new approaches to energy storage and energy transport
- Blending hydrogen into the existing natural gas pipeline network appears to be a strategy for storing and delivering renewable energy to markets
- This approach is being seriously considered both in the US and in Europe
- Currently up to 5% H₂ in German gas network allowed [1]

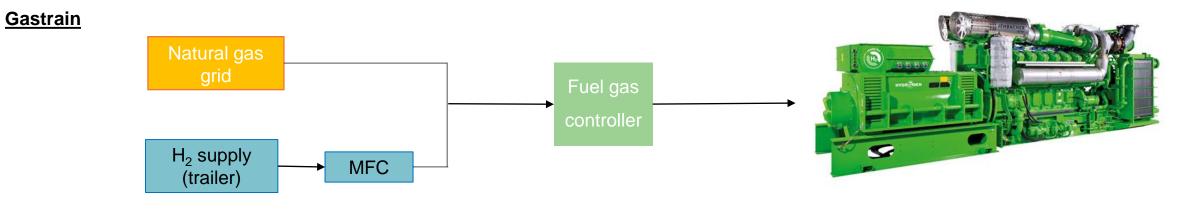
[1] Deutscher Bundestag, Grenzwerte für Wasserstoff (H₂) in der Erdgasinfrastruktur, Wissenschaftliche Dienste Fachbereich WD8, 7.6.2019

Performance measurement: H₂ admixing to natural gas at LEC Measurement setup

Questions to be answered

Identify limiting factors

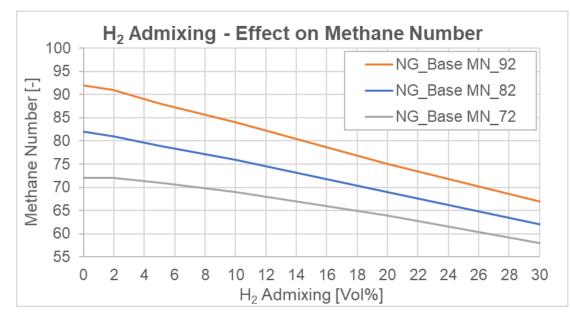
- Efficiency / heat balance
- Engine operating window
- Maximum blending rate


Outline required modifications

• Mitigation strategy

<u>Testplan</u>

Admixing H_2 to NG


- Load sweeps
- IT-NOx map
- Investigations on different emission control software versions
- H₂ maximum blending rate
- Variation of IT as a function of H₂

Performance measurement: H₂ admixing to natural gas at LEC What changes?

Methane number

Heating value & Laminar flame speed

	Unit	NG MN90	NG MN90 + 25%Vol. H ₂
Fuel lower heating value	kWh / Nm³	10.1	8.31
Fuel density	kg / Nm³	0.716	0.561
Fuel volume flow rate	Nm³ / h	286	347
Laminar flame speed	cm/s	15.2	16.7

Example:

Low MN level of 70 and 25 % H_2 add-mixing \Rightarrow Delta MN \approx -10

Low MN level of 80 and 25 % H_2 add-mixing \Rightarrow Delta MN \approx -15

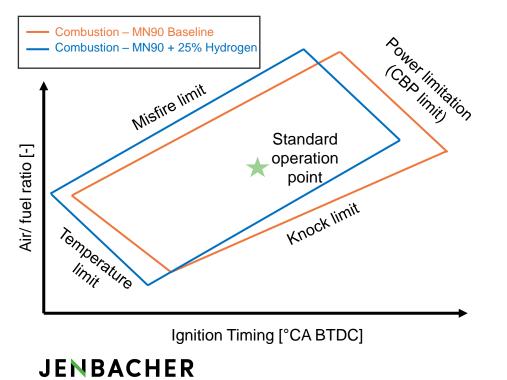
Performance measurement: H₂ admixing to natural gas at LEC

Which challenges we are facing?

Limiting factors & risks

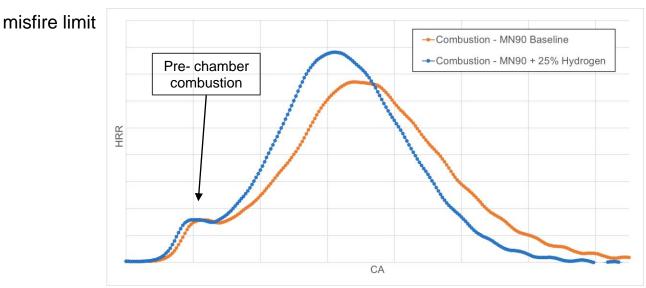
- Reduced methane number \rightarrow impact on knock border
- Increased laminar flame speed \rightarrow impact on combustion
- Ignition energy is less for H₂ → increased risk for backfire and deflagration
- Impact on mechanical components
- Grid code compliance / transient performance

Safety - relevant


- Gas engine safety concept → additional control algorithms or sensors required
- Engine room ventilation concept
- Fire, gas, H_2 alarm system $\rightarrow H_2$ leakage detection
- Engine room access control
- Operational instructions
- Material evaluation certificates

Performance measurement: H₂ admixing to natural gas at LEC

What happens with the engine operating window?


Engine operating window is restricted by four main limits:

- Knock border
- Misfire limit H₂
- Exhaust temperature or turbine inlet temperature
- Compressor bypass reserve (CBP) limit

Impact on operating window by adding 25%Vol. H₂ to NG:

- Increase of laminar flame speed and widening of lean flame initiation limit enabling operation at leaner fuel ratio
- Faster and earlier combustion leading to increased peak firing pressure and lower energy for the turbine
- Reduced methane number leading to lower knocking border
- Later ignition timing possible before T3 limit is reached
- Lower exhaust enthalpy leading to lower CBP position, limit reached before

INNIQ

Performance measurement: H₂ admixing to natural gas at LEC What can we do?

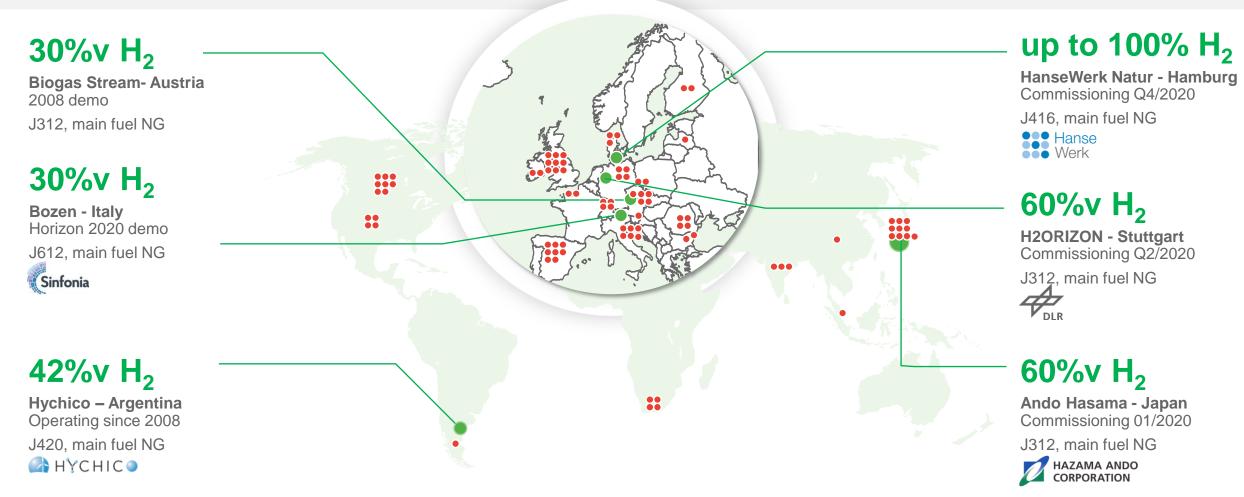
J612 investigations @ LEC in Graz

- H₂ admixing to NG was tested up to 25%Vol. at various operating conditions including different emission control variants, engine load, ignition timing, charge temperature, NOx settings and the methane number of the natural gas.
- Additionally, tests with H₂ blending rate (transient) and operation at the maximum H₂ content were carried out. Finally, a mitigation strategy was applied to counteract the effects of hydrogen admixing.

<u>Results</u>

- The NOx emissions and the compressor bypass reserve can be kept constant by adapting the ignition timing as a function of the H₂ content.
- The strategy successfully mitigates any major changes in NOx, PFP, CBP-reserve, knock margin and turbocharger surge margin. A turbocharger adaptation is not required. A data sheet adaptation for this specific tested engine version is not required.

	Unit	*0% H ₂	Delta – No adjustment,	Delta – only emission	Delta – Emission and combustion	Technical Concept
	Unit	500 NOx	25% H ₂	adjustment, 25% H ₂	constant, 25% H ₂	 H₂ signal
Ignition timing	%	100	0	0	ŧ	 H₂ signal Engine controls development
NOx	%	100		0	0	
нс	%	100	1	1	.↓	 NOx sensor
PFP	%	100	1	1	1	
Controls-Reserve	%	100	+	+	0	
Surge Margin	%	100	+	+	0	


*baseline data is valid for one specific engine version

All rights reserved

INNIO's* hydrogen admixing demo projects

It's happening now

More than **200 MW** of INNIO's installed fleet are **running on syn gases** with up to 70% H₂

All rights reserved

* Indicates a trademark
Syn gas plants (June 2019)

Performance measurement: H₂ admixing to natural gas at LEC Summary

- Blending H₂ into the existing NG pipeline network is being seriously considered in both US and in Europe
- About half of the current Jenbacher product portfolio is affected, plus older versions in the field (installed NG base)
- Our investigations at LEC led to a robust technical concept enabling up to 25% H₂ in NG

JENBACHER INNO

Thank you for your attention! Questions?

Introduction **Application variety**

All rights reserved

Power generation – Delivering fuel flexibility, long service life, outstanding durability & reliability Jenbacher* gas engine platforms

Jenbacher J920 FleXtra

- V20 cylinder; 1,000/900 rpm (50/60 Hz)
- Electrical output: 10.4 MWe (50 Hz), 9.3 MWe (60 Hz)
- Electrical/total efficiency: 49.1/>90% (50 Hz), 49.9/>90% (60 Hz)
- Fast start: 2-minute startup capability
- Delivered engines: ~40
- Launch date: 2013

Jenbacher Type 6

- V12, V16, V20 cylinder; 1,500 rpm (50/60 Hz)
- V24 2-stage turbocharged
- Electrical output: 1.8 4.5 MWe (50 Hz)
- Electrical efficiency: up to 47%
- Fast start version: 45-sec (J620)
- Delivered engines: ~5,500
- Launch date: 1989 (J624 in 2007)

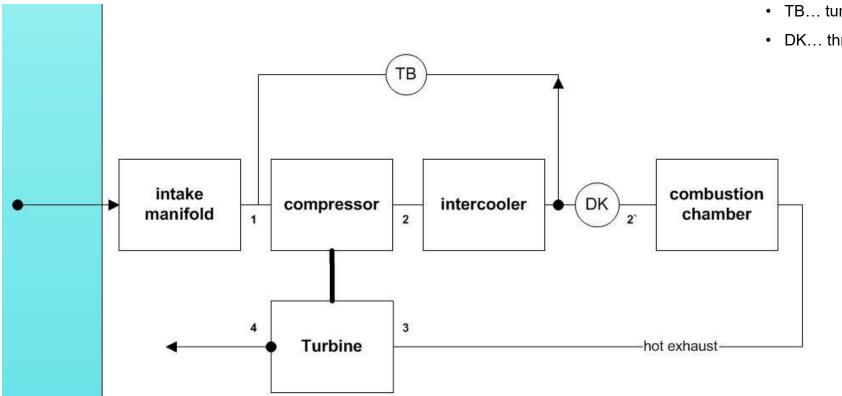
Jenbacher Type 4

Jenbacher Type 3

- V12, V16 and V20 cylinder: 1,500/1,800 rpm (50/60 Hz)
- Electrical output:
- 0.8 1.5 MWe (50 Hz)
- Electrical efficiency: up to 44%
- Delivered engines: ~4,900
- Launch date: 2002

• V12, V16 ,V20 cylinder;

- 1,500/1,800 rpm (50/60 Hz)
- Electrical output:
- 0.5 1 MWe (50 Hz)
- Electrical efficiency: up to 41.7%
- Delivered engines: ~10,100
- Launch date: 1988


Jenbacher Type 2

- L8 cylinder;
 - 1,500/1,800 rpm (50/60 Hz)
 - Electrical output:
 - 250 330 kWe (50 Hz)
 - Electrical efficiency: 39.5%
 - Delivered engines: ~1,200
 - Launch date: 1976

Functional block diagram

Function of compressor bypass

- TB... turbocharger bypass valve
- DK... throttle valve